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Abstract. The static screening of an external charged particle in a three-dimensional charged-
boson gas is investigated by employing two different procedures. Both procedures satisfy the
Kato–Kimball cusp condition and the proper normalization of induced densities. Self-consistent
quadratic response solutions for the induced density and associated screened potential are presented.
The solutions, obtained by successive approximations for an integral equation and via perturbative
approximations for an integro-differential equation, are compared and analysed. The convergence
condition for successive approximations in infinite order is deduced.

1. Introduction

The goal of the research to be described here is to compare perturbative solutions for two
well-established procedures for screening calculations, treating the case of a fixed-charge
impurity in an ideal, charged-boson gas atT = 0. The procedures are based on the Euler
equation of density functional theory [1–3] and the density profile relation given by an integral
equation [4, 5]. Because of the difference between the two methods, it is useful to compare
the results that one obtains.

The perturbative solutions, obtained here up to quadratic order in the external chargeZ

for the induced densities and screened potentials, allow a valuable investigation to be made via
comparison of the results with rigorous, procedure-independent constraints. Furthermore, the
solutions provide useful insight into the important question of convergence, and may extend
the range of validity of the standard linear screening theory. Clearly, one needs to know the
quadratic response at least, in order to see how good the linear response is.

The system of point-like charged bosons embedded in a neutralizing background atT = 0
has attracted attention in recent years as an important reference system of quantum statistics
with possible application to superconductors, and to systems of astrophysical interest (see
references [6, 7] and earlier references cited therein). The charged-boson gas offers a relatively
simple many-body model for the above-mentioned problem of screening, and thus parallels
the physically more significant system of electrons for the same problem [8–10]. Parallel
theoretical efforts on bosons and fermions may be helpful in disentangling the effects of
screening due to the Coulomb interaction and those due to the exclusion principle.

The paper is organized as follows. In section 2 we outline the two procedures to
be employed. The quadratic approximations are defined there. We summarize rigorous
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constraints for the impurity case. In section 3 our results for the induced densities and potentials
are presented and analysed. Section 4 is devoted to a summary and some concluding remarks.
The paper ends with a short appendix. We use atomic units (e2 = h̄ = m = 1) throughout this
work.

2. Procedures and constraints

The ideal gas of charged boson particles (of massmand chargee) is characterized by the density
parameterrs which is related to the unperturbed number densityn0 by rs = (3/4πn0)

1/3.
The ground-state wave-function (ψ0) of the system is a unique, non-negative symmetric
function [11] and, in our case, it is given byψ0 = √n0.

Now, suppose we place a charged test particle of massM � m in the many-body system.
Then, the total boson density depends on the positionr and can be written as

n(r) = n0 + δn(r) (2.1)

where the induced density (δn(r)) satisfies the screening, i.e. normalization, condition∫
d3r δn(r) = Z. (2.2)

The spherically symmetric, screened potential (V (r)) of the charged impurity is calculated, in
our self-consistent treatment, by using the Poisson equation

V (r) = −Z
r

+
∫

d3r′
δn(r′)
|r − r′| . (2.3)

In the first procedure, we consider, according to the Hohenberg–Kohn theorem, the
fundamental energy functional for jellium in the presence of a charged test particle. The
Euler equation of this variational problem becomes [1–3]

−1

2
∇2ω(r) + V (r)[ψ0 + ω(r)] = 0 (2.4)

in which the convenient notation
√
n(r) ≡ ψ(r) = ψ0 + ω(r) is introduced. Notice that the

value of the chemical potential (µ0), i.e. the Lagrange multiplier, is fixed asµ0 = 0, for the
ideal gas atT = 0. This ground-state method gives for equation (2.4), by using equations (2.2)
and (2.3) with the appropriate expressionδn(r) = 2ψ0ω(r)+ω2(r), a non-linear Schrödinger
equation. Generally, the solution of this equation requires an iterative method. Furthermore,
an investigation of the short-distance limit of equation (2.4) results in a useful constraint, which
is known as the Kato–Kimball nuclear cusp condition [12,13]:

δn′(r)
n(r)

∣∣∣∣∣
r=0

= −2Z. (2.5)

Our quadratic treatment rests on a perturbative expansion, which is defined as follows:

ψ(r) = ψ0 +ψ1(r, Z) +ψ2(r, Z
2) + · · · (2.6)

for the ground-state wave-function. Using this notation, the relevant contributions (n1(r, Z)

andn2(r, Z
2)) to the induced densityδn(r) = n1(r, Z) + n2(r, Z

2) + · · · can be written as

n1(r, Z) = 2ψ0ψ1(r, Z) (2.7a)

n2(r, Z
2) = 2ψ0ψ2(r, Z

2) +ψ2
1(r, Z). (2.7b)
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For simplicity, from now on, only the indices (1 and 2) will be used to indicate first- and
second-order expansions. The screened potential is defined asV (r) = V1(r) + V2(r) in the
quadratic approach, and the corresponding expressions are given by

V1(r) = −Z
r

+
∫

d3r′
n1(r

′)
|r − r′| (2.8a)

V2(r) =
∫

d3r′
n2(r

′)
|r − r′| . (2.8b)

In equations (2.7a), (2.7b) and (2.8a), (2.8b) the solutionsψ1(r), n1(r) andψ2(r), n2(r) are
the results from solving coupled equations, by using equation (2.4) up to the relevant order:

−1

2
∇2ψ1(r) + V1(r)ψ0(r) = 0 (2.9a)

−1

2
∇2ψ2(r) + V2(r)ψ0 + V1(r)ψ1(r) = 0. (2.9b)

Notice that equation (2.9a) with equations (2.7a) and (2.8a) gives the self-consistent linear
response solution.

In the second procedure to be employed, we consider a density profile relation [5] given
in the form of an integral equation, in Fourier-momentum (q-) space. This method is not
based on the variational principle for the ground-state energy. It uses anansatz[4,14] for the
effective, screened interaction. The linear integral equation is as follows, for an ideal boson
system [4,5]:

δn(q) = n1(q)

[
1 +

1

πω2
p

∫ ∞
0

dk k2f (k, q) δn(k)

]
(2.10)

whereω2
p = 4πn0 is the classical plasma frequency, and the functionf (k, q) has the form

f (k, q) = 1 +
q2 − k2

2qk
ln

∣∣∣∣ q + k

q − k
∣∣∣∣ . (2.11)

Notice that in equation (2.10)n1(q) is the linear response solution, outlined at the end of the
preceding paragraph. This linear response solution is unique for our procedures and has the
asymptotic form (see section 3, below)n1(q)→ Z(16πn0)/q

4 for highq-values.
Using this together with the well-established relation of Kimball [13]

δn′(r)
∣∣
r=0 = −

1

8π
lim
q→∞[q4 δn(q)] (2.12)

we arrive (via equations (2.10)–(2.11) and the trick of inverse Fourier representation with
r → 0 in the argument of equation (2.10)) at the standard Kato condition of equation (2.5).
Therefore, the nuclear cusp condition is satisfied in the integral-equation procedure. Generally,
the solution of equation (2.10) requires an iterative method. Our quadratic treatment, for this
case, rests on a successive approximation for equation (2.10), usingn1(q) under the integral
sign in order to define the corresponding second-order solution of this procedure.

In the following, we formulate a ground-state energy constraint. According to earlier
results, the exact energy change (1E = E(n,Z) − E(n0)) due to the presence of a charged
impurity is given by

1E = n0[V1(q = 0) + V2(q = 0)] − 1

2

∫
d3q

(2π)3
|V1(q)|2χ0(q) (2.13)

for our ideal boson system(E(n0) = n0µ0 = 0) up to quadratic order [15]. HereV1(q) and
V2(q) are the Fourier transforms ofV1(r) andV2(r), andχ0(q) is the static, non-interacting
response function (see reference [16] and section 3, below).
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3. Results

The present section will be devoted to detailed analytical results, with relevant comparisons
and accompanying analysis. For convenience, we introduce new variables (R andQ) via the
definitionsR = rλ andQ = q/λ, whereλ = (4πn0)

1/4. In addition, in order to distinguish
quadratic solutions, we shall use (beside the index 2) an asterisk for results obtained from the
integral equation (n∗2 andV ∗2 ).

The linear response solution, which is unique in both procedures, is defined by equ-
ations (2.8a)–(2.9a). The linearized, Schrödinger-like equation (2.9a) is solved by standard
Fourier transformation and the results obtained are

n1(Q) = 4Z
1

Q4 + 4
(3.1)

V1(Q) = −4πZ

λ2

Q2

Q4 + 4
(3.2)

in which the above-introduced variables are used. The ratio ofv(q) = −4πZ/q2 andV1(q)

gives us the usual dielectric function

ε(q) = 1 +
4λ4

q4
≡ 1 +

4π

q2
χ0(q) (3.3)

of the boson system. The density response functionχ0(q) is needed in equation (2.13) for
energy calculation, at the quadratic order of approximation.

The real-space equivalents of equations (3.1) and (3.2) are calculated by inverse Fourier
transformations and have the following forms:

n1(R) = Zλ3

2π

e−R

R
sinR (3.4)

V1(R) = −Zλe−R

R
cosR. (3.5)

The ration1(R = 0)/n0 = 2(Z/λ) shows that the natural expansion (small) parameter in our
treatment is, in fact,Z/λ. The ratio suggests, for the case of a negative impurity (Z < 0),
a physical estimate for the validity range (|Z/λ| < 0.5) of the solution, due to the obvious
|δn(r = 0)/n0| < 1 constraint. For a positive impurity (Z > 0), the appearance of a bound
state in a screened potential may signal the validity limit for its perturbative solution. This
useful constraint provides [17] theλ/Z > 0.72 value for the applicability of the form ofV1(r).
By using theλ4 = 3/r3

s representation, one can estimate the corresponding values of the density
parameterrs . According to expectation, the validity of the perturbative solutions is restricted to
high densities (n0 ∼ λ4) even for the smallest, physical|Z| = 1. Finally, from equation (3.5)
we can subtract the value of the first-order induced potential (φ1(R) = V1(R) + (Zλ/R)) at
the origin;φ1(r = 0) = Zλ at fixedλ.

Now, we present our quadratic solutions obtained within the frameworks of the procedures
applied. Equation (2.9b) is solved with the help of Fourier transformation into momentum (q-)
space and simultaneous application of equations (2.8b), (3.4), (3.5) and (2.7a). The result for
the induced density (n2(q)) is given, in this case, by

n2(Q) = n1(Q)
Z

8λ

[
Q ln

4 + (Q + 2)2

4 + (Q− 2)2

+Q3

(
arctan

Q

2
+

1

2
arctan

2−Q
2
− 1

2
arctan

2 +Q

2

)]
(3.6)
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in whichn1(Q) is given by equation (3.1) and the introduced variableQ = q/λ is used. The
quadratic, induced potential (see equation (2.8b)) has the simple formV2(q) = (4π/q2)n2(q).

The corresponding result for the integral-equation procedure is as follows:

n∗2(Q) = n1(Q)
Z

λ

[
1 +

Q

4
ln

∣∣∣∣Q2 + 2 + 2Q

Q2 + 2− 2Q

∣∣∣∣ +
1

2Q
arctan

4Q(Q2 − 2)

(Q2 − 2)2 − 4Q2

− θ(Q− (
√

3− 1))π

2Q
− θ(Q− (

√
3 + 1))π

2Q

]
. (3.7)

This equation is obtained by using equation (3.1) in the argument (q = λQ) of equation (2.10)
and standard application of the residue theorem for integration in the latter. The quadratic,
induced potential of this successive approximation isV ∗2 (q) = (4π/q2)n∗2(q).

It is very instructive to discuss the asymptotic limits, on the basis of equations (3.6) and
(3.7), for quadratic, induced densities and associated potentials. The high-q limits of these
equations are the same:n2(q →∞) = n∗2(q →∞)→ 8Z2λ3/q4. This is in accordance with
the relevant cusp constraint (see equations (2.5) and (2.12)) in a perturbative approximation
for the densityn(r) = n0 + δn(r) = n0 + n1(r) + n2(r) + · · ·. The low-q limits are different,
i.e., n2(q → 0) → q2(Z2/8λ3) andn∗2(q → 0) → q2(Z2/3λ3) respectively; therefore the
associated induced potentials become different (see equation (2.13)) in the forward (q = 0)
direction.

Next, we evaluate equation (2.13) by using equations (3.2), (3.3), (3.6) and (3.7). The
integral in equation (2.13) has the value of−(Z2λ/8); therefore one obtains

1E = n0V2(q = 0)− Z
2λ

8
= Z2λ

8
− Z

2λ

8
= 0 (3.8a)

1E∗ = n0V
∗
2 (q = 0)− Z

2λ

8
= Z2λ

3
− Z

2λ

8
> 0. (3.8b)

Consequently, up to this quadratic order, the procedure based on the Euler equation of ground-
state density functional theory, and giving equation (3.8a), is superior to the integral-equation
procedure which results in equation (3.8b).

We performed numerical, inverse Fourier transformations in order to obtain the real-space
equivalents of the induced quadratic densities and potentials. This calculation gives, for the
important ratios (atr = 0) of the densities,

n2(0)/n1(0) ' n∗2(0)/n1(0) ' Z/λ
by using equation (3.4), also. We note thatV2(R = 0) andV ∗2 (R = 0) do not depend on the
density (remember,φ1(R = 0) = Zλ). A similar fact was established for the electron gas
model at lower densities (see figure 5 in reference [10]). The density ratios show that (as was
stated earlier in this paper) the expansion (small) parameter in the perturbative methods for
the charged-boson system is∼Z/λ. In the appendix the convergence condition for successive
approximations, in infinite order for the integral-equation procedure, is deduced.

4. Summary

The interaction of an external charged particle with a charged-boson gas has been investigated
by using two non-linear procedures for static screening. Quadratic response solutions for the
induced density and associated screened potential are presented, compared and analysed. The
method based on the Euler equation of the variational ground-state theorem is shown to be
superior to the one based on the integral equation. We have determined a rigorous mathematical
expression for the convergence condition for self-consistent perturbative approximations for
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the case of the inhomogeneous, linear integral equation. A condition of similar rigour for the
case of the non-linear Schrödinger equation remains an interesting open question.

It is found, by detailed physical considerations, that the perturbative approximations might
be useful for small values of the expansion parameterZ/λ of the present problem. The results
obtained are applicable, therefore, to high-density systems even for the physically smallest
|Z| = 1 external charge.
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Appendix

We rewrite equation (2.10) using equation (3.1) via the usual variablesx = q/λ andy = k/λ.
Next, we multiply the resulting equation byx2 and introduce the functionsF(x),8(x) (F(x)
for the free term,8(x) for the unknown function) and the kernelK(x, y) as follows:

F(x) = 4Zx2

x4 + 4
(A.1)

8(x) = x2 δn(x) (A.2)

K(x, y) = F(x)
{

1 +
x2 − y2

2xy
ln

∣∣∣∣ x + y

x − y
∣∣∣∣} . (A.3)

Using this notation, we can write the original inhomogeneous, linear integral equation in the
transparent and usual form

8(x) = F(x) +3
∫ ∞

0
dy K(x, y)8(y) (A.4)

where the parameter (3) of this equation is3 = (πλ)−1.
The Neumann series expansion for equation (A.4) is defined by standard successive

approximations. These successive approximations converge uniformly [18] to the limit
(unique) solution for all values of3 < R, where the radiusR is defined by

R−2 =
∫ ∞

0
dx
∫ ∞

0
dy [K(x, y)]2. (A.5)

By performing the integrations, and taking into account the convergence constraint, we can
give for our natural expansion parameter the following final form:

|Z|
λ
< 0.98. (A.6)

Therefore, successive approximations, even in infinite order, as discussed in this appendix, are
restricted to systems with small charges or high densities(λ ∼ n1/4

0 ); this is in agreement with
our statements based on more physical grounds.
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